Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Virol ; 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2232492

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to public health and has quickly become a global concern. The infection of SARS-CoV-2 begins with the binding of its spike protein to the receptor-angiotensin-converting enzyme 2 (ACE2), which, after a series of conformation changes, results in the fusion of viral-cell membranes and the release of the viral RNA genome into the cytoplasm. In addition, infected host cells can express spike protein on their cell surface, which will interact with ACE2 on neighboring cells, leading to cell membrane fusion and the formation of multinucleated cells or syncytia. Both viral entry and syncytia formation are mediated by spike-ACE2 interaction and share some common mechanisms of membrane fusion. Here in this review, we will summarize our current understanding of spike-mediated membrane fusion, which may shed light on future broad-spectrum antiviral development.

2.
Virol Sin ; 37(3): 380-389, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1730151

ABSTRACT

The recent COVID-19 pandemic poses a global health emergency. Cellular entry of the causative agent SARS-CoV-2 is mediated by its spike protein interacting with cellular receptor-human angiotensin converting enzyme 2 (ACE2). Here, by using lentivirus based pseudotypes bearing spike protein, we demonstrated that entry of SARS-CoV-2 into host cells was dependent on clathrin-mediated endocytosis, and phosphoinositides played essential roles during this process. In addition, we showed that the intracellular domain and the catalytic activity of ACE2 were not required for efficient virus entry. Finally, we showed that the current predominant Delta variant, although with high infectivity and high syncytium formation, also entered cells through clathrin-mediated endocytosis. These results provide new insights into SARS-CoV-2 cellular entry and present proof of principle that targeting viral entry could be an effective way to treat different variant infections.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Clathrin/metabolism , Endocytosis , Humans , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL